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Abstract:

Modeling hydraulic fracturing in the presence of a natural fracture network is a challenging task, owing to 
the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions 
between propagating fractures and existing natural interfaces. Understanding these complex interactions 
through numerical modeling is critical to the design of optimum stimulation strategies. In this paper, we 
present an explicitly integrated, fully coupled discrete-finite element approach for the simulation of 
hydraulic fracturing in complex fracture networks. The individual physical processes involved in 
hydraulic fracturing are identified and addressed as separate modules: a finite element approach for 
geomechanics in the rock matrix, a finite volume approach for resolving hydrodynamics, a geomechanical 
joint model for interfacial resolution, and an adaptive remeshing module. The model is verified against 
the KGD closed-form solution for the propagation of a single hydraulic fracture and validated against 
laboratory testing results on the interaction between a propagating hydraulic fracture and an existing 
fracture. Preliminary results of simulating hydraulic fracturing in a relatively complex natural fracture 
system are also presented.

Keywords: Hydraulic fracture; discrete fracture network; explicit coupling; fracture interaction; rock 
joint; reservoir model

1. INTRODUCTION

Hydraulic fracturing is widely used by the energy industry (e.g., stimulation of gas shales, enhanced 
geothermal systems, etc.) to increase permeability of geological formations through the creation of 
hydraulically driven fractures and coupling of these new higher permeability flow paths with the natural 
fracture networks in the rock. A number of methods have been developed to make direct and indirect field 
observations on the hydraulic fracturing process, including mineback experiments, tiltmeter and 
microseismic mapping, pumping pressure diagnosis, etc. [1-4]. Numerous analytical and numerical 
hydraulic fracturing models have been developed to explain these observations (e.g. [5-10]). Despite the 
variety of existing models, there remains a gap between the state-of-the-art methodologies for modeling 
hydraulic fractures and the imminent needs of industry to improve prediction of hydraulically-driven 
fracture behavior in the presence of complex preexisting fracture networks at field scales. Field data have 
demonstrated the complex patterns of new hydraulic fractures and re-mobilized preexisting fractures in 
naturally fractured reservoirs (e.g. [1, 11]). However, much attention from the hydraulic fracture 
modeling community has focused on scenarios with highly idealized fracture geometries. The classic 
PKN and KGD models [5, 7-9] and contemporary incarnations (e.g. [12, 13]) only address propagation of 
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a single fracture with assumed geometries in a homogeneous medium. The pseudo-3D (P3D) and planar 
3D (PL3D) models [10, 14] are capable of addressing some of the issues with the homogeneous medium 
assumption by simulating fractures vertically extending through multiple geologic layers, but each 
simulation can only handle one crack lying in a single vertical plane. Other available numerical models 
for hydraulic fracturing generally approach modeling from one of two directions: rigorously address the 
solid-fluid coupling for a single fracture in a homogenous medium or address the relatively complex 
network but with little or no ability to capture the creation of new fractures [15-20].

Here we present a numerical method for simulating hydraulically-driven fracturing in relatively complex 
preexisting/natural fracture systems, under the assumptions of quasi-static plane-strain deformation, 
laminar Newtonian flow, and an impermeable rock matrix. This numerical model is akin to a numerical 
extension of the KGD model with the additional ability to handle arbitrary rock toughness and the 
interactions between multiple fractures. The organization of the paper is as follows: Section 2 of the paper 
describes the overall simulation strategy and the coupling scheme between the multiple physical 
processes involved. The algorithmic aspects of the individual components in the model are described in 
Section 3. In Sections 4 and 5, we verify and validate the model against available closed-form solutions 
for the propagation of a single fracture and laboratory experimental data on the interaction between two 
fractures, respectively. Finally, we present preliminary results on using the numerical model to simulate 
the stimulation of a naturally fractured reservoir with a complex preexisting fracture network.

2. STIMULATION STRATEGY AND COUPLING SCHEME

The aforementioned gap between existing simulation capabilities and need for modeling complex fracture 
systems is largely due to the intrinsically complex nature of the hydraulic fracturing process. A variety of 
inter-dependent physical mechanisms, including flow within the discrete fracture network in the presence 
of changing joint permeability, rock deformation due to both interaction between the pressurized fluid in 
the joint and changing stresses within the rock matrix, and evolution of the fracture network and rock 
matrix topology as fractures propagate over time, must be appropriately handled to result in reasonable 
hydraulic fracturing simulation.

Existing analytical models often accommodate the interactions between the above mechanisms by 
implicitly coupling them into the governing equations. Because of the complexity of the interactions, only 
a subset of the mechanisms, usually in highly simplified and idealized forms can be incorporated into 
such equations. To avoid this limitation, our numerical model adopts an explicit coupling simulation 
strategy where individual modules are developed to model these distinct physical mechanisms with their
interactions embodied by the data/information exchange between the modules. Because the solid and fluid 
solvers share the same time-integration approaches, the overall error from this approach coupling remains 
second-order. Important modules in our numerical model include: 

 A finite element method (FEM) geomechanics solver with linearly elastic elements and a linear 
elastic fracture mechanics (LEFM) component to resolve trajectory and growth rate of 
propagating fractures.
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 A finite volume method (FVM) hydrodynamics flow solver for viscous, laminar flow.
 A geomechanical joint model to capture the nonlinear, hysteretic behavior of the interfacial 

interactions as well as the coupling to permeability changes.
 An adaptive remeshing module for generating topologically compatible meshes between the finite 

elements and finite volume elements.
Figure 1 illustrates the coupling of these modules. The algorithmic aspects are described in the next 
section. In real geological settings a number of additional phenomena may be important depending on the 
application, including anisotropy, creep, geochemical interactions, thermal effects, etc., which are beyond 
the scope of this approach. The objective here is to develop a numerical model compatible with the KGD 
model but with the additional capabilities of handling interactions between fractures and a more rigorous 
treatment of fracture mechanics than that model affords. The formulations of the constitutive modules in 
this paper serve this objective and thus simple forms are preferred. Because of the modular design of the 
simulation framework and the explicit coupling method, each module can be easily modified or upgraded 
when necessary, as long as the interfaces with other modules are appropriately handled.

Solid Solver

Flow SolverRemeshing Module

Joint Model
Joint deformation

A
pe

rtu
re

 w
id

th

Pressure field along fractures

Updated flow network

Fr
ac

tu
rin

g 
ev

en
ts

U
pd

at
ed

 so
lid

 m
es

h Joint stress

Figure 1 Important modules in the hydraulic fracturing simulator and their coupling.

3. FORMULATION OF INDIVIDUAL MODULES

3.1 FEM solid solver

The finite element module uses the six-node iso-parametric triangular plain-strain element known as the 
Linear Strain Triangle or the Veubeke triangle, and linear elasticity and small deformations are assumed 
for the intact material response. The solver uses central-difference explicit time-integration scheme. At 
each time step, t, the nodal force vector Fi(t) acting on a node i has four contributions: 1) elastic 
deformation of the elements connected to the node, 2) fluid pressure if the node is associated with a flow 
cell, 3) contact stress if this node is associated with a closed joint, and 4) external forces such as those 
acting at the stress-controlled boundaries. In the explicit time-integration scheme, the dynamic responses 
are solved on a nodal basis as follows.
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where iu , iu , and iu are the nodal displacement, velocity, and acceleration vectors, respectively. C
iF is 

the nodal damping force, and only the mass-proportional term of the Rayleigh damping is used in this 
model. To reduce the computational constraints, the high frequency components in the dynamic response 
are filtered through the use of the damping term, which is commensurate with the quasi-static 
assumptions of the process. The mass of an element is distributed to the six nodes, with 1/19 of the 
element mass assigned to each vertex node and 16/57 to each mid-edge node (Section 16.2.4 in [21]). Δts

is the time increment used in the solid solver and a Courant-Friedrichs-Lewy (CFL) coefficient of 5% is 
used to ensure numerical stability. 

3.2 Hydrodynamics solver for discrete flow network

Fluid flow in open rock fractures is idealized as laminar flow between two parallel plates employing 
lubrication theory. The governing equations used in typical hydraulic fracturing models are
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where l represents the length along the fracture; q is the local flow rate in the fracture at a given cross-
section; wh is the local time-dependent hydraulic aperture size; P is the local fluid pressure; and κ
represents the permeability of the fracture, which is a function of the dynamic viscosity μf of the fluid and 
the local aperture size wh. Equation (4) is the continuity (mass conservation) equation; equation (6) is the  
permeability equation, according to the laminar parallel plate flow assumption. These governing 
equations are solved with a two-dimensional finite volume method (FVM) formulated based on a three-
dimensional approach described by Johnson and Morris [22]. This approach and the modifications are 
described here.

Implementations of FVM employ either node-centered (vertex-centered) or element-centered (cell 
centered) formulations, and our model uses the latter. To avoid ambiguity, we use the nomenclature of 
“cell” to denote a finite volume flow element and “element” to denote a solid finite element. As shown in 
Figure 2, flow connections (corresponding to fracture networks in the solid phase) are discretized and 
visualized as line segments. For a given cell, i, the parameters correspond to length, LCi, fluid mass inside 
the cell, mCi, volume, VCi, hydraulic aperture size, wh

i as well as the associated permeability, Ci according 
to equation (6), fluid pressure, PCi, etc. where the subscript “C” abbreviates “cell”. In a cell representing 
an open fracture, the aperture size can be approximated by the distance between the two fracture walls 
calculated in the solid solver and the volume is the product of length (area in 3D) of the cell along the 
direction of fracture extension and the aperture size, i.e. VCi=LCiwh

i. The formulation for closed fractures 
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subjected to compression will be discussed in Section 3.5. Fluid pressure and aperture size vary within 
each cell, so PCi represent the pressure value at the cell center and wh

i is the average aperture width of the 
cell.
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Figure 2 Two-dimensional flow network modeled by the finite volume method.

The follow solver employs an explicit integration scheme, which makes it convenient to couple the flow 
solver and the solid solver. At each time step, the flow rate of the flow cells is evaluated on a node-by-
node basis (note the distinction between the solid node and flow node). Assume there are C

IN cells 
connected to the same flow node I; flow rate from a cell to the common node (i.e. outflow) is assumed to 
be negative; and the fluid pressure at this node is PI. The flow rate between cell I-i (the ith cell connected 
to node I) and node I is
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and subsequently the flow rate of each cell can be computed according to equation (7). A special yet very 
common case is that a flow node is connected to only two cells, denoted as cell i and cell j. In this 
particular case, the flow rate from cell i to cell j can be simplified as
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where ij is the homogenized permeability with
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By looping through all the flow nodes, we calculate the flow rate of each cell from and to its two nodes, 
thereby obtaining the mass increment and updated fluid mass in the cell. The local fluid pressure is related 
to the fluid density through the following equation-of-state (EOS)
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where Kf is the bulk modulus of the fluid; ρref is the reference density of this fluid, namely the density at 
zero or the datum pressure; Pvap is the temperature-dependent vapor pressure of this fluid which is 
assumed to zero, as the pumping pressure is typically many orders of magnitude higher than the vapor 
pressure. For any given fluid, the three parameters μf, Kf, and ρref are dependent on temperature, and to a 
lesser extent, the pressure. These parameters are assumed to be constant in all the numerical examples of 
this paper unless otherwise indicated, but temperature- and pressure-dependent material parameters can 
also be specified in the model. At the end of this step, fluid pressure is calculated for all the flow cells and 
the procedure is repeated in successive time steps. The coupling between the solid phase deformation and 
the fluid flow is completed through the joint model, which applies the fluid pressure to the solid mesh 
elements that are interfaced with the cell and alters the aperture according to the geometric distance of the 
interfacing surfaces. Despite the simple form, this approach captures salient features of flow in narrow 
joints due to a pressure gradient, and mass conservation and pressure variation in flow channels with 
constantly varying volume (i.e. varying aperture size). The second mechanism can cause discontinuity in 
the system and violate equation (4), which is mediated though the equation-of-state (12).

In this approach, fluid bulk modulus Kf acts as a component of the contact stiffness as well as of the EOS. 
The governing equations (4) to (6) are essentially formulation for incompressible fluid but a 
compressibility term Kf is used in the equation-of-state to relate fluid density to pressure. The role of Kf in 
this solver is similar to that of material density in an explicit solid solver for quasi-static problems. That 
is, as a pseudo-inertial term, the fluid compressibility can be judiciously reduced to achieve a longer 
critical time step without sacrificing accuracy of the quasi-static analysis. We have empirically found that 
as long as the value of Kf is significantly greater than the fluid pressure, the simulation results are 
insensitive.

3.3 Fracturing criterion

A fracturing criterion determines whether new fracture surface should be generated and along which 
direction the fracture should propagate by evaluating certain mechanical quantities at tips of existing 
fractures. The fracturing criterion in the current model is based on the “critical stress intensity factor” 
concept in linear elastic fracture mechanics (LEFM). Mode-I and mode-II stress intensity factors (SIF), KI

and KII are calculated using the generalized displacement correlation (GDC) method and the propagation 
direction is determined using a maximum circumferential stress criterion for mixed-mode fracturing. 
Details of the GDC method and the evaluation of its accuracy are described in a separate paper [23] and 
we present the essence of this method here for completeness of the current paper. 
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Generalized displacement correlation method

In the original displacement correlation methods [24-29], SIF’s are calculated from nodal displacements 
near the fracture tip based on analytical solutions for near-tip region displacement. It requires the use of 
special quarter-point elements [24,27] in the first layer of elements around each tip, which makes it very 
difficult to be used in simulations of dynamic fracture propagations, where locations of fracture tips 
constantly evolve and are not known a priori. To overcome this problem, we have developed a 
generalized form of this method, called the generalized displacement correlation (GDC) method, which 
uses regular linear or quadratic finite element types and can produce accurate results with relatively
coarse mesh without near-tip refinement.

The finite element mesh near a fracture tip is shown in Figure 3. Quadratic elements (six-node triangle or 
eight-note quadralateral) with mid-edge nodes are used. For plain-strain condition, SIF’s can be 
calculated as
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where G is the shear modulus of the solid;  is the Poisson’s ratio; lE is the characteristic length of the 
element as denoted in Figure 3; CI and CII are correction multipliers; ur and uθ are the polar and angular 
displacements of reference points relative to the fracture tip. The GDC formulation is similar to that of the 
original displacement correlation method with the main difference being that the two reference points A
and A' are mid-edge nodes of regular quadratic elements, instead of special quarter-point nodes. The 
multipliers CI and CII are necessary for correcting the errors induced by regular finite elements’ inability 
to characterize the square-root displacement term in the near-tip region. They were found in [23] to be 
functions of tip-region mesh configuration, element type, mesh size relative to crack length, and Poisson’s 
ratio. Among these factors, the element type is fixed (six-node quadratic triangle) in our model, and the 
effects of mesh size and Poisson’s ratio can be ignored for most geo-engineering purposes. The meshing 
scheme used in all the examples of the present paper consists of two common tip-region element 
configurations as shown in Figure 4 and the corresponding correction multipliers are also shown in the 
figure.
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Figure 3 Typical mesh arrangement around a fracture tip. A polar coordinate system is established with its 
origin at the tip. The reference points used in equations (13) and (14) are denoted as small circles, 
whereas alternative reference points shown as diamonds can also be used with modified formulations as 
elaborated in [23].

Figure 4 Two common tip-region mesh configurations used in this study and the corresponding GDC 
correction multipliers.

Fracturing criterion and fracture propagation direction

When the SIF’s at a tip are known, the well known fracturing criteria [30, 31] can be directly applied and 
these criteria usually also predicts fracture propagation directions. In our current implementation of the 
numerical models, a simplified form of the criteria is adopted based on the constraint that fracture can 
only follow element boundaries. Although it is theoretically possible to allow a fracture to propagate 
along an arbitrary direction through element partition or the extended finite element method (XFEM)
[16], such methods will make the implementation of the model unacceptably expensive and complex, 
especially because of the coupling of multiple modules and the large number of possible scenarios of 
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fracture intersections. The adopted meshing scheme shown in Figure 4 allows a fracture to propagate 
along seven or three directions (with 45° and 90° increments, respectively) from a tip. However, at a scale 
larger than the element size, a fracture can propagate along almost any direction by combining many 
element edges. Nevertheless, the fracturing criterion to be adopted only needs to determine along which 
candidate edge the fracture should propagate.

The simplified fracture criterion is triggered when 2
_

22
critIIII KKK  and 0IK , where KI_crit is the 

mode-I critical stress intensity factor (i.e., toughness) of the matrix rock. The second condition ( 0IK ) 
dictates that a fracture should not grow unless it is completely open. In the absence of pressurized fluid, 
all fractures in natural geological formations should be closed and compressive stress is transferred 
through the contact stress of the two walls of the fractures. As the fracture is pressurized with fluid, the
two walls may slide as the normal contact stress, which is essentially the effective normal stress, 
decreases. Therefore, KII may significantly develop before the fracture is open. However, due to the 
kinematical constraints posed by the closed fractured, fracture growth is bounded. This bounded sub-
fracturing is homogenized in our model by only allowing fractures that are completely open to propagate.

Once the above triggering criteria are met, we calculate the normal stress on all the candidate edges at 
their mid-edge nodes. The fracture will propagate along the edge with the greatest normal stress (tension 
is positive). The stress component resembles the circumferential stress used in some classical criteria (e.g. 
[30]), but it is evaluated at a distance of half the edge length instead of at the tip to be consistent with the 
approach of separating the entire edge during the time step.

The above empirical criterion was found to yield reasonable results, as demonstrated by the numerical 
example in Section 6.1, where a hydraulic fracture propagates in a heterogeneous in situ stress field.

3.4 Adaptive remeshing algorithm

When the fracturing criterion determines that a fracture should grow along an identified finite element 
edge, this edge is flagged “fracture-ready” and the adaptive remeshing module is invoked. We use the 
idealized example shown in Figure 5 to demonstrate how the solid mesh and flow cells are updated. 

An edge is considered to be external if there is only one element attached to it, whereas there are always 
two and only two elements attached to an internal edge. An external edge either represents the free 
boundary of the rock mass, or one of the walls along a fracture interface. Each time a fracture-ready edge 
is identified, the two nodes attached to this edge are examined. A given node will be split if either two of 
the edges connected to this node are frature-ready or one of the edges connected to this node is fracture-
ready while two of the edges are external. Figure 5(a) illustrates this approach with edge 8 and edge 13 
flagged as fracture-ready. Subsequently, node 5 is split from the first condition and nodes 4 and 9 are split 
due to the second condition. Figure 5(b) shows the mesh configuration after the aforementioned 
remeshing has taken place. Each node that has been split generated two daughter nodes. For instance, 
nodes 12 and 13 are the daughter nodes of node 5. The daughter nodes belong to the new solid mesh 
while the mother nodes are detached from the solid mesh and attached to the newly created flow cells 
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(cell 1 and cell 2). Reusing the nodes and edges that have been detached from the solid mesh ensures that 
intersecting fractures will result in correct connectivity of the new flow cells. For instance, edge 5 is 
flagged at a later step, and subsequently, nodes 12 and 2 are split. The new flow cell 3 should not be 
connected to node 12, which has just been split, but to node 5, the mother node of node 12 as shown in 
Figure 5(c). During the remeshing process, the mapping between mother nodes and daughter nodes, and 
that between mother edges and daughter edges is established and stored. Such information is used 
frequently during the simulation because we apply the fluid pressure from flow cells (which were all 
previously solid element edges) to their daughter edges as stress boundary conditions to the solid solver. 
Meanwhile, the locations of the daughter nodes and daughter edges are used to update the locations of the 
flow cells and the aperture sizes. 

1 2 3

4 5 6 6

7 8 9

1 2 3

4 5
10

11

12

13

14
15

7 8
9

1 2 3

4 5
10

11

18

16 17

19

13

14
15

7 8
9

1 2

4 6

8 9

11

3 5 7

1413

15

10 12

16

1 2

4 6

9

11

3 5 7

1419
20

15

10 12

17

18

16

1 2

4 6

9

11

3 7

1419

20

15

21 22

10 12

17

18

16

1

2

1

3

2

(a) (b) (c)

Figure 5 Adaptive remeshing of the finite element model to create new fractures. (a), (b), and (c) 
represent three states of the same mesh. The labels for edges are placed at mid-edge, and the mid-edge 
nodes are not shown. Because of the unique correspondence between the edges and the mid-edge nodes, 
mid-edge nodes are always split when the corresponding edge is split.

3.5 Joint model

Joint behaviors involved in a hydraulic fracturing process, such as dilation associated with shear 
deformation, reversed and cyclic loading, joint asperity degradation, and their influences on hydraulic 
conductivity are very complex, and sophisticated constitutive models are often needed to deal with these 
behaviors (e.g. [32-34]). Here we have implemented a simplified form of the joint model that handles the 
most basic behaviors including the opening, closing, shear deformation and sliding. As illustrated in 
Figure 1, the essential function of the joint model in this numerical model is to receive information 
regarding rock deformation from the solid solver, calculate stress responses and permeability changes, 
and feed this information to the solid and flow solvers. 

Figure 6 shows two solid elements on the opposing sides of a fracture. Two edges, denoted as edge p and 
edge q, of these elements represent the two opposing walls along the fracture. Edge p is geometrically 
characterized by its mid-point xp in the vector form, its length pL , a unit outer-pointing normal vector np, 
and a unit tangential vector tp. Similar variables can be defined for edge q and are not repeated here. 
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These two edges are the daughter edges of the same edge in the original non-fractured solid mesh, so the 
lengths are the same ( qp LL  ) if the small difference in deformation of the two elements in the tangential 
direction is ignored. The two edges are assumed to be parallel, i.e. np+np≈0. The normal and tangential 
components of the distance between the mid-points of the two edges are

ppq
n nxx  )( (15)

ppq
t txx  )( (16)

The rate of change of the above quantities, n and t can be calculated using similar formulations but 
with the location vectors replaced with velocity vectors. Because the relative displacement of the two 
sister edges in the tangential direction in hydraulic fracturing simulations is usually very small compared 
with the length of the edges, only contacts between sister edges are evaluated. In other words, it is 
possible that a very small segment of edge p can interact with a segment of the edge next to edge q along 
the fracture face, but this type of interaction is ignored in the model and no neighbor-sorting is performed 
to update nearest neighbors, which both limits and expedites the calculation.

Figure 6 Geometrical characterization of two opposing edges along a fracture. The distances between the 
two edges are exaggerated for illustration purposes.

When δn<0, the two elements that these two edges attached to penetrate into each other geometrically, 
representing the state that the two walls along the fracture are in contact where contact stresses should be 
calculated and returned to the solid solver. The absolute value of δn is equivalent to the joint closure as 
used in rock mechanics. The normal contact stress and the tangential contact stress are calculated using 
the following equations:
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where kn and ks are the normal stiffness and shear stiffness of the joint with a dimension of stress/length. 
It is well known that both kn and ks are highly nonlinear, and they are strongly correlated. The response in 
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the cases illustrated here are not sensitive to joint stiffness, so these are treated as constants for 
illustration. μJ is the coefficient of friction of the walls along the fracture;  sign() is a function returning 
the sign (positive or negative) of the argument. The Coulomb failure criterion is enforced through 
equation (18). Note that although the omission of shear dilation is appropriate for the scope of the present 
paper, this mechanism can play a significant role in other problems. The combination of the contact stress 
and the fluid pressure should be applied to the edges along the fracture as stress boundary conditions. 

When δn>0, we term it the mechanical aperture (also termed the storage aperture in the literature) of the 
fracture. As mentioned in Section 3.2, it is assumed that the permeability of an open fracture (δn>0) obeys 
the cubic law expressed in equation (6), i.e. wh= δn. When a fracture is closed (δn<0), it can still conduct 
fluid flow because of the partly continuous void space between the two walls left by the imperfect 
matching of the asperities on the opposing sides. Under this condition, the permeability is a function of 
many factors, including roughness and strength of the joint walls, the mismatch of the two walls, effective 
compressive normal stress, and shear dilation. These factors are not considered in the examples in this 
paper, and we instead use the following simplified relationship between the equivalent hydraulic aperture 
size wh and δn:
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where hw0 is the “residual” equivalent hydraulic aperture size of a closed fracture, and it is assumed to be 
a constant regardless of the closure and stress of the joint. Note that the “equivalent” aperture size of a 
closed fracture is calculated from the permeability of the fracture according to equation (6). It does not 
represent the physical opening of the two walls in contact, but it conveniently has a dimension of length.

4 MODEL VERIFICATION AGAINST THE KGD MODEL

4.1 The KGD model and its compatibility with the proposed numerical model

The KGD hydraulic fracture model was independently developed by Khristianovic and Zhelton (1955)
[5], and Geertsma and de Klerk (1969) [8]. Since it is based on assumptions that are compatible with 
those of the proposed numerical model in this paper, we use the KGD model as the reference for model 
verification. 

The KGD model concern the propagation of a single fracture driven by fluid pumped into the fracture 
from the wellbore at a constant flow rate of q0, as shown in Figure 7. It assumes plane-strain deformation, 
linearly elastic, homogeneous and isotropic media, and laminar Newtonian flow obeying the cubic law, 
which are consistent with the proposed numerical model. The KGD model assumes the flow rate 
everywhere along the fracture is the same as that at the wellbore when calculating pressure loss. This 
simplification is not needed in the numerical model and the effects of this assumption are discussed in 
Section 4.3. The propagation of fracture is controlled by the assumption that there is no gap (vacuum) 
between the front of the fluid and the fracture tip. Therefore, the KGD model essentially assumes the 
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fracture propagation is in the fluid viscosity-controlled regime, and the rock toughness is not explicitly 
considered. The setup of the numerical model can adopt the same assumption as described in Section 4.2, 
but a more general case with finite rock toughness will be discussed in Section 4.4.

Figure 7 Geometrical characteristics of a KGD fracture. The well is partly shown. The model implies that 
there is another identical fracture on the other side of the well symmetrical to the one shown.

Pressurized fluid drives the fracture to propagate along the direction perpendicular to the minimum 
compressive principal stress. Closed-form solutions for various quantities, such as fracture length Lfrac and 
aperture width at the wellbore hw0 at any given time t are available, such as the set derived by Valko and 
Economides (1995):
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where E'=2G/(1-) is the plane-strain modulus of elasticity. 

4.2 Numerical realization of the KGD model

The simulated domain has dimensions of 100 m and 120 m in the x and y directions, respectively and is 
discretized into 24,000 elements with a mesh pattern shown in Figure 4. The core mesh is then extended 
to approximately 1,000 m in each dimension with progressively larger elements to mitigate boundary 
effects. Slip boundary conditions are applied to the edges. At the left side boundary where the injection 
well is located this applies a symmetrical condition, consistent with the assumption in the KGD model. 
Because of the linear elasticity assumptions of the model, the in situ stress applied at the boundary will 
not affect the net pressure results, consistent with the KGD model.  Simulation parameters used in this 
and subsequent analyses (whenever applicable) described in the paper are listed in Table 1.
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Table 1 Parameters of the numerical model for the simulation of the KGD model

Parameters Value
Rock, shear modulus G 8.3 GPa
Rock, Poisson’s ratio  0.2
Fluid, dynamic viscosity μf 0.001 Pas
Fluid, bulk modulus Kf 2.2 GPa
Flow rate at wellbore q0 1.0, 2.0a, and 4.0  liters per second (L/s) per meter 

thickness of reservoir
Residual hydraulic aperture width hw0 0.02 mm

Note: a baseline case simulation.

To realize the zero-toughness and no-vacuum assumptions of the KGD model, the critical SIF (KI_crit) in 
the model is a small finite value (1,000 Pam1/2). The fracturing criterion is only checked when the flow 
cell connected to the tip is fully filled with fluid, i.e. mCi/VCiref. When a new flow cell and the associated 
fracture are created, a fluid lag exists. Meanwhile, the aperture and volume of this cell continue to grow 
along with permeability. The fracture will start propagating from the current tip when the cell is fully 
filled and the calculated KI is greater than the threshold value. 

The growth of the fracture length calculated using the numerical model for the three injection rates listed 
in Table 1 is compared with the corresponding KGD analytical solutions in Figure 8. For the baseline case 
(q0=2.0 L/s per meter reservoir thickness), three snapshots of aperture width along the fracture at t=20, 40, 
and 80 seconds are shown in Figure 9. The KGD model assumes the cross section of the fracture to have 
an elliptical shape while the numerical model calculates the aperture width based on deformation in the 
solid phase and no such assumption is needed. At each moment, the integral of the aperture width along 
the fracture is the total volume of the fracture, which is the product of the injection flow rate and the 
injection duration. Compared with the analytical solution, the numerical model predicts a slightly shorter 
fracture length and slightly wider aperture at the well. Since a number of approximations had to be made 
in the derivation of the KGD solution which can be relaxed in the numerical model (e.g., constant flow 
rate along the fracture), the small differences do not necessarily indicate error of the numerical model.
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Figure 8 Comparison between the numerical model and the KGD analytical solution in terms of fracture 
growth rate.

Figure 9 Comparison between the numerical model and the KGD analytical solution in terms of aperture 
distribution along the fracture.

4.3 Toughness-dominated regime

The propagation of fracture in the original KGD model is dominated by viscous flow of the fluid and a 
key assumption is that there is no gap (i.e. vacuum) between the front of fluid and the fracture tip. In this 
section, we derive the formulation for hydraulic fracturing in rock with a high critical stress intensity 
factor and compare the numerical model with the analytical solution. We assume in this regime aperture 
of the fracture is wide enough that pressure loss of the fluid along the fracture is negligible compared with 
the fluid pressure at the tip, so the net pressure is ΔP is a constant in the fracture from the wellbore to the 
fracture tip. This validity of this assumption in the numerical examples is established later in this section. 
Two wings of fractures grow simultaneously from the well towards opposite directions and their 
combination can be modeled as a planar fracture in an infinite medium with its center at the wellbore. 
Assuming at time t the length of each wing is Lfrac(t), the volume of fluid in one wing is
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where E' is the plane-strain modulus of elasticity defined in Section 4.1, and q0 is the fluid injection rate 
into each wing which is a constant for a simulation. The net pressure ΔP is determined by the condition 
that the mode-I stress intensity factor at the tip equals to the rock toughness KI-crit, namely

critIfrac KLΔP 2/1)( (23)

Plugging equation (22) into (23), we can obtain 
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Under this finite-toughness condition, the length of the fracture is proportional to the injection time raised 
to the exponent of 2/3, similar to the original KGD model shown in equation (20).  However, the viscosity 
of the fluid does not influence the fracture growth rate, but the rock toughness does. To numerically 
model this finite-toughness condition, the same numerical model described in Section 4.2 is adopted with 
the no-vacuum-at-tip restriction removed. Two cases with rock toughness values of 5.0 and 10.0 MPam1/2

are simulated, and the flow rate q0 is assumed to be 2.0  liters per second (L/s) per meter thickness of 
reservoir. As shown in Figure 10, the numerical results match the analytical solution reasonably well. 

Figure 10 Comparison between the analytical solution and the numerical simulation results for the finite-
toughness scenarios.

To check the assumption that the pressure loss along the fracture can be ignored in these cases, we 
examine the following situation. For the case with KI-crit=5.0 MPam1/2 at t=75.2 seconds, the fracture 
length Lfrac is approximately 50 meters. The mean aperture size is 3.0 mm ( frac

h Ltqw /0 ). For a 
constant flow rate of q0=2.0  L/s per meter reservoir thickness through a fracture with a uniform aperture 
width of 3.0 mm, the pressure drop is 44 kPa according to equations (5) and (6), which is approximately 
11% of the net pressure required to create a stress intensity factor of 5.0 MPam1/2 at the fracture tip. For 
the case with KI-crit=10.0 MPam1/2 at a crack length of 50 meters, this ratio is 0.7%. Therefore, omission 
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of pressure loss along the fracture for the rock toughness-dominated scenarios is reasonable for the 
parameters tested. Note that the critical SIF values used in these two examples are higher than those of 
typical rocks, in order to ensure that the fracture propagation is in the toughness-dominated regime. Real 
hydraulic fracture propagation should be somewhere between these viscosity-dominated and toughness-
dominated bounds. Though this is naturally accommodated by the proposed numerical model, analytical 
solutions for these intermediate scenarios are not available.

5 MODEL VALIDATION AGAINST LABORATORY TESTS

5.1 Description of the laboratory test

In the previous section, we have verified that the numerical model can appropriately handle the coupling 
between the fluid phase and the solid phase during the propagation of a single fracture. We further 
validate the model in this section in terms of its ability to simulate the interaction between a propagating 
fracture that intersects an existing fracture.

Blanton [36] fabricated synthetic rock blocks using “hydrostone” with an existing fracture embedded at 
variable angles with respect to the specimen, as illustrated by the horizontal cross-section in Figure 11. 
Each rock block was then placed in a triaxial cell for testing. The vertical compressive stress (out-of-plane 
in Figure 11; compression is positive) is 20 MPa, and the two horizontal principal stress components σh <
σH ≤20 MPa. Water was injected into a hole at the center of each specimen to create a hydraulic fracture 
propagating in the plane normal to the minor principal stress σh and subsequently intersecting the existing 
fracture at an angle of approach θapr.  The variables investigated in Blanton’s study included the 
magnitudes of σH and σh and the angle of approach θapr.  Testing parameters and the observed interaction 
modes between the hydraulic fracture and the existing fracture for selected cases are listed in Table 2.
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Figure 11 Schematic views of Blanton (1982)’s laboratory tests [36] on the interaction between a 
hydraulic fracture and an existing fracture. The two horizontal dimensions of each specimen are 30 cm x 
30 cm.  (a) Triaxial stress applied to the specimen and the geometrical configuration of the two fractures; 
(b) stress along the existing fracture before the hydraulic fracture intersects it, and (c) additional stress 
along the existing fracture induced by the opening of the hydraulic fracture and the interaction between 
the two fractures.

5.2 Mechanisms for different interaction modes

Three modes of interaction including “crossing”, “arrest”, and “opening” were reported in Blanton’s 
study. The mechanisms behind these three modes have been extensively studied using a variety of 
methods (e.g. [37-40]) in the literature. We briefly review the process of a hydraulic fracture intersecting 
an existing fracture to help the determination of the key parameters of the numerical model and the 
interpretation of the simulation results.

Before the stress field in the specimen is significantly altered by the creation and propagation of the 
hydraulic fracture, the normal and shear stress ( 0

EF and 0
EF , respectively; the subscript “EF” stands for 

“Existing Fracture” and the superscript “0” indicates that this is the initial condition) as shown in Figure 
11(b) are functions of σH , σh , and θapr and are listed in Table 2. When the hydraulic fracture has 
intersected the existing fracture at point C1 but has not break the other wall of the fracture at C2, 
additional stresses will act on the existing fracture: First, pressurized fluid will start to flow into the 
existing fracture. If we assume the fluid pressure at a given moment and location along the existing 
fracture is P(t) and the effective normal stress (i.e. contact normal stress between the two walls along the 
fracture) at the same time and location is σEF(t), the following relationship holds

0)()( EFEF tPt  
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This is approximate because the stress field might be perturbed near the intersection. The effective normal 
stress along the existing fracture decreases as the fluid pressure in it increases. Since solid block I
(enclosed by A1-C1A-B1) and block II (A2-C1B-B2) tend to move away from each other, especially when 
fluid pressure P is significantly higher than σh, this motion will create additional shear stress τOP along the 
fracture as shown in Figure Figure 11(c). Note that the subscript “OP” stands for “opening”. This shear 
stress increment has opposite directions at the two sides of point C2, and is the primary driving 
mechanism of the stress intensity factor at C2.

Table 2 Different scenarios tested in Blanton (1982) [36], observed interaction modes, and numerical 
simulation results.

Case IDa θapr

Principal stress (MPa) Interaction 
mode

Stress on ex. 
frac. before 

pumping
hEF

EF



0

0 Max. SIF 
at C2

(MPa·m1/2)
σH σh

0
EF 0

EF

CT-20 90° 14.0 5.0 crossing 14.0 0.0 0.00 0.69

CT-21 60° 14.0 5.0 arrest 11.7 3.9 0.58 0.36

CT-8 60° 20.0 5.0 crossing 16.2 6.5 0.58 0.59

CT-4 60° 12.0 10.0 opening 11.5 0.9 0.58 0.13

CT-22 45° 10.0 5.0 opening 7.5 2.5 1.00 Negligible

CT-14 45° 14.0 5.0 arrest 9.5 4.5 1.00 Negligible

CT-13 45° 16.0 5.0 arrest 10.5 5.5 1.00 Negligible

CT-12 45° 18.0 5.0 arrest 11.5 6.5 1.00 Negligible

CT-11 45° 20.0 5.0 arrest 12.5 7.5 1.00 Negligible

Note: a Case ID here is the “Test #” in Blanton’s original paper.

The role of hydraulic pressure in this process is twofold. In order to generate an SIF that is great enough 
to break the fracture wall at point C2 and allow the hydraulic fracture to cross the existing fracture, high 
fluid pressure is needed to create additional shear stress τOP along the existing fracture by pushing blocks I 
and II apart. However, a higher fluid pressure will reduce the effective normal stress on the existing 
fracture and the two blocks might be able to slide along the wall, preventing the creations of a high SIF. 
The relative significance of these mechanisms depends on the existing normal and shear stresses on the 
fracture before fluid flow into the existing fracture. Next we consider an idealized scenario. Assume when 
the hydraulic fracture breaks one of the fracture walls at point C1 and intersects the existing fracture, the 
fluid pressure P= σh. Note that P≥ σh is the necessary condition (but no sufficient condition) for the 
hydraulic fracture to propagate. Because the hydraulic pressure merely balances σh, blocks I and II do not 
have a significant tendency to move apart from the fracture and therefore τOP≈0. If we assume no sliding 
takes place along the existing fracture under this condition, the mobilized coefficient of friction is 

)90tan()()( 0000
aprhEFEFEFEF P    with the derivation process omitted here and the value of 
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mobilized coefficient of friction for all the scenarios listed in Table 2. Under this condition, 
configurations with smaller approaching angles have a stronger tendency to slide along the existing 
fracture at the moment the hydraulic fracture intersects the existing fracture. If the fluid pressure near the 
intersection point increases beyond σh, then the sliding tendency is enhanced, because 1) the effective 
normal stress is further reduced, and 2) the shear stress is increased as least on one side of point C2. 

5.3 Numerical simulation results

The nine scenarios in Table 2 are simulated using the numerical model. The original paper [36] did not 
provide information on the fluid pressure for each specimen. The actual pressure should be dependent on 
a number of factors, including the minor principal stress σh, dynamic response of the pumping system, 
and the compliance of the hydraulic system. A clue that helps estimate the pressure at the injection hole is 
the difference between the “opening” mode and the “arrest” mode. Opening means that the hydraulic 
fracture is first arrested by the existing fracture and the pumping pressure is higher than normal stress 
(~ 0

EF ) induced by the boundary condition. We found that a fluid pressure of σh+3.0 MPa is consistent 
with the observations in the laboratory testing results and this pressure is used as the flow boundary 
condition in the simulations. The toughness (i.e. critical stress intensity factor) of the hydrostone is 
unknown. To quantify the effects of the external variables on the ability or potential of the hydraulic 
fracture to cross the existing fracture, we use a small toughness value (10 kPa·m1/2) on the left-hand-side 
of the existing fracture, so that the hydraulic fracture can propagate towards the existing fracture. We do 
not allow the mesh to fracture to the right of the existing fracture in the simulation.  Instead, we track the 
mode-I stress intensity factor KI at point C2 and the maximum value achieved by each specimen is 
presented in Table 2. Other numerical simulation parameters are presented in Table 3.

Table 3 Parameters of the numerical model for the simulation of the Blanton experiments

Parameters Value
Rock, shear modulus G 8.3 GPa
Rock, Poisson’s ratio  0.2
Fluid, dynamic viscosity μf 0.001 Pas
Fluid, bulk modulus Kf 2.2 GPa
Fluid pressure at the injection hole σh+3.0 MPa
Joint, residual hydraulic aperture width hw0 0.005 mm
Joint, coefficient of friction μJ 0.7
Joint, normal stiffness kn 500 GPa/m
Joint, shear stiffness ks 1.0 GPa/m
Average element dimension ~ 1 cm

Figure 12 shows the evolution of KI at point C2 and the fluid pressure near C2 for two cases, CT-8 and 
CT-21, with their only difference being σH. After the fracture wall at C1 breaks, KI at C1 increases as the 
pressure increases, due to the associated increase of τOP. KI suddenly drops when the pressure is high 
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enough to allow sliding to occur alone the existing fracture. The case with a higher σH value has a 
stronger resistance to sliding than the other case, and therefore KI is able to continue to grow to a higher 
peak value before the fluid pressure is high enough to induce sliding. As mentioned in Section 5.3 and 
shown in Table 2, for the specimens with θapr=45º, the mobilized coefficient of friction at C2 needs to be 
higher than 1.0 to sustain significant τOP but the coefficient of friction used in the simulation is 0.7. 
Therefore, KI values significantly higher than zero cannot develop in those cases.
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Figure 12 The evolution of KI at point C2 and fluid pressure near C2 for two cases.

Based on the simulation results, we find that if the toughness of the hydrostone is greater than 0.36 but 
smaller than 0.59 MPa·m1/2, the numerical model can exactly reproduce the observed phenomena in 
Blanton’s laboratory tests. Although the toughness of this particular material used cannot be precisely 
determined, the study in this section demonstrates that the proposed explicit coupling simulation strategy 
and the numerical model can adequately reflects the physical mechanisms governing the interaction 
between two intersecting fractures. A significant advantage of this method compared with other methods 
used for this problem is that the temporal evolution of the states of each phase can be explicitly resolved 
and the effects of each variable in this physical process can be studied independently.

6. DEMONSTRATION OF SIMULATION CAPABILITY

6.1 Fracture propagation in heterogeneous field

The proposed numerical model only allows fracture to initiate and propagate along interfaces between 
neighboring solid elements, namely edges in the mesh, which raises mesh dependency concerns. In this 
section, we examine this effect through a numerical example where a hydraulic fracture propagates in a 
solid medium with a heterogeneous field.

The boundary conditions applied to a 200 m × 100 m solid medium are shown in Figure 13(a). Slip 
boundaries are applied at the left and bottom boundaries. The stress applied at the other two boundaries is 
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denoted in the figure and the resultant nodal stress tensors are visualized as ellipses. The major principal 
stress is horizontal at the left side of the medium and it gradually becomes vertical at the right side. Fluid 
is pumped into the domain through a perforation shown in the figure. Since hydraulic fracture tends to 
grow in the direction perpendicular to the minor principal stress, it is expected that it will first propagate 
horizontally and then gradually turn vertical. 

Figure 13 Hydraulic fracture propagation in a medium with a heterogeneous stress distribution. (a) The 
boundary conditions and stress tensor distribution before hydraulic fracturing. (b) The path of the 
hydraulic fracture and the stress tensor at the end of the simulation. The 2D stress tensor at each note is 
represented by an ellipse. The lengths of the two axes of an ellipse are proportional to the two principal 
stress components at this point and the orientations of the two ellipse axes coincide with the orientations 
of the two principal stress components.

The simulation uses parameters similar to those used in Section 4, and the fracture path obtained and the 
stress tensor distribution at the end of the simulation are shown in Figure 13(b).  Although the simulated 
hydraulic fracture abruptly switches trajectory by 45°, due to the mesh constraints, the model is able to 
capture the overall propagation path of the fracture which is dictated by the applied boundary conditions.
Therefore, the mesh dependency of fracture path appears to be not a serious issue at a scale that is 
significantly larger than the element size. The fracturing criterion is “smart” enough to find the optimum 
combination of element edges to form a continuous fracture path that is consistent with the mechanical 
conditions applied in the model.
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6.2 Study of responses of a reservoir with isotropically oriented natural fractures

In this section we use the proposed numerical model to investigate the stimulation of a virtual reservoir 
with the presence of largely isolated natural fractures with uniformly distributed orientations.  The 
variables to be studied include the orientation of the far-field principal stress axes and the degree of stress 
anisotropy. The reservoir setting is hypothetical and the primary objective of these simulations is to study 
whether the numerical simulation results can reasonably respond to the variation of external variables.

Natural fractures and meshing strategy

The simulation domain interior to the boundary mesh is 100 m long in both dimensions (from 0 to 100 m 
in the x/horizontal direction and from -50 m to 50 m in the y/vertical direction), and the triangle elements 
have edges approximately 1 m long. The mesh is based on the meshing scheme shown in Figure 3 but a 
small and random perturbation is imposed on the location each node to introduce some randomness to the 
mesh as shown in Figure 14(c).  Progressively larger element sizes are employed to extend the simulation 
domain to 1,000 m in each dimension, and the far-field stress conditions are applied at the boundary of 
the extended mesh. A preexisting natural fracture system is randomly generated and mapped onto the 
edges of solid elements within the core simulation domain as shown in Figure 14 (a). The fractures are 
largely isolated with lengths ranging from 6 m to 18 m with a mean of 11 m.  The orientations of these 
fractures are uniformly distributed between 0 and 180 degrees rotating from the x direction. The injection 
well for hydraulic stimulation is placed at x=0 and y=0. At the bottom, top, and right boundaries of the 
core simulation domain, a zero-pressure boundary condition is specified in the flow solver as shown in 
Figure 14 (b), so these three boundaries are treated as fluid “sinks”. Simulation parameters used in this 
suite of examples are similar to those used in Sections 4 and 5 and are thus not repeated here.

Figure 14 Preexisting natural fractures and the meshing strategy. (a) The randomly generated natural 
fractures; (b) the core simulation domain and the extended domain; and (c) perturbed mesh to introduce 
randomness to the fracture path. 

The effects of principal stress orientation
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Three simulations are performed in the study of the effects of principal stress orientation. In the baseline 
case (A-1), the far-field stress is σxx= 15 MPa, σyy= 10 MPa, and σxy= 0 (compressive stress is positive in 
this example). Fluid is pumped into the system through the injection well denoted in Figure 14(b) at a 
constant pressure of 14 MPa. The simulation result of the stimulated fracture system for the baseline case 
at the end of the stimulation are shown in Figure 15(a), where the fractures (including both natural and 
created fractures) that are engaged (i.e. connected to the injection well and pressurized by the fluid) in the 
stimulation are shown in red color and the unaffected fractures are in gray. Note that the aperture widths 
are magnified by twenty times to enable clear visualization. The distribution of stress component σyy at the 
end of the stimulation is shown in Figure 15(b) where the additional compressive stress created by the 
pressurized fractures along the horizontal direction and the tensile stress at fracture tips in the pumping 
front are visible. The simulation results for the two additions cases, A-2 and A-3, where the principal 
stresses have rotated counterclockwise and clockwise, respectively, by 30 degrees are shown in Figure 
15(c) and (d).

It is well known that hydraulic fractures tend to propagate along the plane of the least compressive (far-
field) stress in homogeneous media. In all the three cases, the general orientations of the engaged fracture 
systems are consistent with the predicted directions based on the far-field principal stress orientation. The 
heterogeneity in the rock body due to the presence of natural fractures inevitably affects the paths along 
which hydraulic fractures propagate, making them deviate from the ideally predicted paths. These effects 
appear to be local, with a minimal influence on the general trends of the fractures.  Moreover, these 
effects, embodied by the interactions between fractures are well reflected in the numerical model. This 
study also confirms the observations made in Section 6.1 regarding the minimal mesh dependency of 
fracture paths in the proposed numerical method. In the current meshing scheme, the inter-element 
interfaces, namely potential fracture paths are generally along directions 0°, 45°, 90°, and 135° from the 
x-axis with some randomness introduced by the mesh perturbation. However, this does not prevent the 
fractures from propagating along directions ±30°.  
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Figure 15 Stimulated fracture networks with different far-field principal stress orientations. Preexisting 
natural fractures and newly created fractures that are engaged by the stimulation are shown in red color, 
whereas unaffected natural fractures are in gray. The orientations of the principal stresses are 
schematically shown in each figure. (a) Baseline case A-1 where the major principal stress aligns with the 
x-axis; (b) distribution of σyy in case A-1 at the end of stimulation, with the blue end of the color spectrum 
indicating stress that is more compressive and the red end being more tensile or less compressive; (c) case 
A-2, the principal stress axes have rotated counterclockwise by 30 degrees from the baseline; and (d) case 
A-3, the principal stress axes have rotated clockwise by 30 degrees from the baseline.

The effects of stress anisotropy
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In this study, the baseline case B-1 is the same as the baseline case A-1 in the previous study. The 
additional scenarios have the same far-field stress in the y-direction (σyy= 10 MPa) as the baseline case but 
smaller compressive stresses σxx= 12 and 10 MPa for cases B-2 and B-3, respectively. Note that the far-
field stress for case B-3 is isotropic. The pumping pressure for all the cases remains 14 MPa. The 
simulation results are shown in Figure 16 in a fashion similar to that of Figure 15, with fractures engaged 
in the stimulation highlighted. The result for B-1 is the same as that for A-1, and is thus not repeated in 
Figure 16. 

   

Figure 16 Stimulated fracture networks under different degrees of stress anisotropy but the same principal 
stress axis orientation.  The far-field stress state is denoted in each figure. Note that the baseline case is 
shown in Figure 15(a).

The stimulated fracture network for case B-2 is similar to that of the baseline case, with a slightly more 
diffuse pattern of fracture growth at the far side from the injection well, presumably because the reduced 
compressive stress in the x-direction provides more flexibility in the choice of viable propagation paths by 
the hydraulic fracture. In case B-3, there is no preferential fracture propagation direction since the far-
field stress is isotropic. Four major branches of fractures have developed as the results of the stimulation 
along largely random directions, but these four branches tend to propagate away from each other. This is 
because if two parallel fractures are close to each other, the compressive stress in the rock matrix induced 
by the fluid pressure tends to impede the development of tensile zones at the fracture tips, retarding 
further propagation.

7 CONCLUDING REMARKS

In this paper we present an explicit coupling simulation strategy for hydraulic fracturing in complex 
natural fracture systems. In the proposed method, each of the physical processes involved in hydraulic 
fracturing is modeled by a separate module of the simulator and the interactions between these processes 
are embodied by the data/information sharing between these modules. Since multiple processes of rather 
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different natures are involved and they influence each other in many different ways, this explicit strategy 
provides a flexible simulation framework for complex hydraulic fracturing phenomena. Because the 
operations of these modules are sufficiently decoupled in this explicit coupling methodology, upgrading 
an individual module with more realistic (and inevitably more complex) models can be done without
significantly affecting other modules. Therefore, although only the baseline simulation capability using 
relatively simple models is described in this paper, the presented simulation framework will remain 
unchanged if more complex problems are to be simulated.

The verification and validation of the numerical model focus on relatively simple but well-quantifiable 
phenomena in rock-fracture-fluid systems. Quantitative data, at either the laboratory or field scale are not 
available for the interaction between hydraulic fractures and existing natural fracture networks. However, 
since the interactions between fractures in a complex fracture network can be decomposed into the 
propagation of individual fractures and the interactions within individual pairs of fractures, the 
verification and validation in this paper provide a reasonable physical and mechanics base, on which the 
credibility of the proposed model is built.

The numerical model using this explicit coupling strategy is known to be computationally expensive. The 
main reason is that the physical phenomena being simulated are not only complex, but also ill-
conditioned. The simulation domain is often hundreds of meters in each direction whereas typical 
aperture width is a small fraction of a millimeter. A deformation that is considered small “noise” in the 
solid solver may induce dramatic (by orders of magnitudes) oscillation of fluid pressure in the flow 
solver. Since the model has to essentially resolve multiple dynamic physical processes with characteristic
length-scales across several orders of magnitude, the time steps used in both the solid and flow solvers are 
necessarily very small. As an example, each of the simulations in Section 6.2 costs hundreds of CPU-
hours on currently mainstream computers. A number of modeling and computational technologies, 
including more efficient solvers, more intelligent time-stepping, hybrid solvers, and massively 
parallelized processing are currently being developed and implemented to enable this model to be used 
more effectively.
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